Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.109
Filtrar
1.
Cell Death Dis ; 15(3): 180, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429278

RESUMO

Gasdermin E (GSDME) has recently been identified as a critical executioner to mediate pyroptosis. While epidermal keratinocytes can initiate GSDME-mediated pyroptosis, the role of keratinocyte GSDME in psoriatic dermatitis remains poorly characterized. Through analysis of GEO datasets, we found elevated GSDME levels in psoriatic lesional skin. Additionally, GSDME levels correlated with both psoriasis severity and response to biologics treatments. Single-cell RNA sequencing (scRNA-seq) from a GEO dataset revealed GSDME upregulation in keratinocytes of psoriasis patients. In the imiquimod (IMQ)-induced psoriasis-like dermatitis mouse model, both full-length and cleaved forms of caspase-3 and GSDME were elevated in the epidermis. Abnormal proliferation and differentiation of keratinocytes and dermatitis were attenuated in Gsdme-/- mice and keratinocyte-specific Gsdme conditional knockout mice after IMQ stimulation. Exposure of keratinocytes to mixed cytokines (M5), mimicking psoriatic conditions, led to GSDME cleavage. Moreover, the interaction between GSDME-FL and p65 or c-jun was significantly increased after M5 stimulation. GSDME knockdown inhibited nuclear translocation of p65 and c-jun and decreased upregulation of psoriatic inflammatory mediators such as IL1ß, CCL20, CXCL1, CXCL8, S100A8, and S100A9 in M5-challenged keratinocytes. In conclusion, GSDME in keratinocytes contributes to the pathogenesis and progression of psoriasis, potentially in a pyroptosis-independent manner by interacting and promoting translocation of p65 and c-jun. These findings suggest that keratinocyte GSDME could serve as a potential therapeutic target for psoriasis treatment.


Assuntos
Dermatite , Gasderminas , Psoríase , Animais , Humanos , Camundongos , Dermatite/metabolismo , Dermatite/patologia , Gasderminas/metabolismo , Imiquimode/efeitos adversos , Inflamação/patologia , Queratinócitos/patologia , Psoríase/metabolismo , Psoríase/patologia , Fator de Transcrição RelA/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo
2.
JCI Insight ; 9(5)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38456508

RESUMO

IL-33 is a cytokine central to type 2 immune pathology in chronic airway disease. This cytokine is abundantly expressed in the respiratory epithelium and increased in disease, but how expression is regulated is undefined. Here we show that increased IL33 expression occurs from multiple noncanonical promoters in human chronic obstructive pulmonary disease (COPD), and it facilitates production of alternatively spliced isoforms in airway cells. We found that phorbol 12-myristate 13-acetate (PMA) can activate IL33 promoters through protein kinase C in primary airway cells and lines. Transcription factor (TF) binding arrays combined with RNA interference identified activator protein (AP) TFs as regulators of baseline and induced IL33 promoter activity. ATAC-Seq and ChIP-PCR identified chromatin accessibility and differential TF binding as additional control points for transcription from noncanonical promoters. In support of a role for these TFs in COPD pathogenesis, we found that AP-2 (TFAP2A, TFAP2C) and AP-1 (FOS and JUN) family members are upregulated in human COPD specimens. This study implicates integrative and pioneer TFs in regulating IL33 promoters and alternative splicing in human airway basal cells. Our work reveals a potentially novel approach for targeting IL-33 in development of therapeutics for COPD.


Assuntos
Interleucina-33 , Doença Pulmonar Obstrutiva Crônica , Humanos , Interleucina-33/genética , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo
3.
Cancer Lett ; 587: 216731, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38369005

RESUMO

Therapy resistance and metastatic progression jointly determine the fatal outcome of cancer, therefore, elucidating their crosstalk may provide new opportunities to improve therapeutic efficacy and prevent recurrence and metastasis in esophageal squamous cell carcinoma (ESCC). Here, we have established radioresistant ESCC cells with the remarkable metastatic capacity, and identified miR-494-3p (miR494) as a radioresistant activator. Mechanistically, we demonstrated that cullin 3 (CUL3) is a direct target of miR494, which is transcriptionally regulated by JunD, and highlighted that JunD-miR494-CUL3 axis promotes radioresistance and metastasis by facilitating epithelial-mesenchymal transition (EMT) and restraining programmed cell death 1 ligand 1 (PD-L1) degradation. In clinical specimens, miR494 is significantly up-regulated and positively associated with T stage and lymph node metastasis in ESCC tissues and serum. Notably, patients with higher serum miR494 expression have poor prognosis, and patients with higher CUL3 expression have more conventional dendritic cells (cDCs) and plasmacytoid DCs (pDCs), less cancer-associated fibroblasts (CAF2/4), and tumor endothelial cells (TEC2/3) infiltration than patients with lower CUL3 expression, suggesting that CUL3 may be involved in tumor microenvironment (TME). Overall, miR494 may serve as a potential prognostic predictor and therapeutic target, providing a promising strategy for ESCC treatment.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , MicroRNAs , Humanos , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/radioterapia , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/radioterapia , Carcinoma de Células Escamosas/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/radioterapia , Neoplasias Esofágicas/metabolismo , Células Endoteliais/metabolismo , Prognóstico , Transição Epitelial-Mesenquimal , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Movimento Celular , Microambiente Tumoral , Proteínas Proto-Oncogênicas c-jun/metabolismo , Proteínas Culina/genética
4.
Cell Death Differ ; 31(2): 136-149, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38104183

RESUMO

Fos-related antigen-2 (Fra-2) is the most recently discovered member of the Fos family and, by dimerizing with Jun proteins, forms the activator protein 1 (AP-1) transcription factor. By inducing or repressing the transcription of several target genes, Fra-2 is critically involved in the modulation of cell response to a variety of extracellular stimuli, stressors and intracellular changes. In physiological conditions, Fra-2 has been found to be ubiquitously expressed in human cells, regulating differentiation and homeostasis of bone, muscle, nervous, lymphoid and other tissues. While other AP-1 members, like Jun and Fos, are well characterized, studies of Fra-2 functions in cancer are still at an early stage. Due to the lack of a trans-activating domain, which is present in other Fos proteins, it has been suggested that Fra-2 might inhibit cell transformation, eventually exerting an anti-tumor effect. In human malignancies, however, Fra-2 activity is enhanced (or induced) by dysregulation of microRNAs, oncogenes and extracellular signaling, suggesting a multifaceted role. Therefore, Fra-2 can promote or prevent transformation, proliferation, migration, epithelial-mesenchymal transition, drug resistance and metastasis formation in a tumor- and context-dependent manner. Intriguingly, recent data reports that Fra-2 is also expressed in cancer associated cells, contributing to the intricate crosstalk between neoplastic and non-neoplastic cells, that leads to the evolution and remodeling of the tumor microenvironment. In this review we summarize three decades of research on Fra-2, focusing on its oncogenic and anti-oncogenic effects in tumor progression and dissemination.


Assuntos
Neoplasias , Fator de Transcrição AP-1 , Humanos , Transformação Celular Neoplásica/genética , Antígeno 2 Relacionado a Fos/genética , Antígeno 2 Relacionado a Fos/metabolismo , Regulação da Expressão Gênica , Neoplasias/genética , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , Fator de Transcrição AP-1/metabolismo , Microambiente Tumoral
5.
Stem Cell Res Ther ; 14(1): 371, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110996

RESUMO

BACKGROUND: Morbidity and mortality associated with cardiovascular diseases, such as myocardial infarction, stem from the inability of terminally differentiated cardiomyocytes to regenerate, and thus repair the damaged myocardial tissue structure. The molecular biological mechanisms behind the lack of regenerative capacity for those cardiomyocytes remains to be fully elucidated. Recent studies have shown that c-Jun serves as a cell cycle regulator for somatic cell fates, playing a key role in multiple molecular pathways, including the inhibition of cellular reprogramming, promoting angiogenesis, and aggravation of cardiac hypertrophy, but its role in cardiac development is largely unknown. This study aims to delineate the role of c-Jun in promoting early-stage cardiac differentiation. METHODS: The c-Jun gene in mouse embryonic stem cells (mESCs) was knocked out with CRISPR-Cas9, and the hanging drop method used to prepare the resulting embryoid bodies. Cardiac differentiation was evaluated up to 9 days after c-Jun knockout (ko) via immunofluorescence, flow cytometric, and qPCR analyses. RESULTS: Compared to the wild-type control group, obvious beating was observed among the c-Jun-ko mESCs after 6 days, which was also associated with significant increases in myocardial marker expression. Additionally, markers associated with mesoderm and endoderm cell layer development, essential for further differentiation of ESCs into cardiomyocytes, were also up-regulated in the c-Jun-ko cell group. CONCLUSIONS: Knocking out c-Jun directs ESCs toward a meso-endodermal cell lineage fate, in turn leading to generation of beating myocardial cells. Thus, c-Jun plays an important role in regulating early cardiac cell development.


Assuntos
Corpos Embrioides , Miócitos Cardíacos , Proteínas Proto-Oncogênicas c-jun , Animais , Camundongos , Diferenciação Celular , Linhagem da Célula , Células-Tronco Embrionárias Murinas , Miocárdio , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo
6.
Genome Biol ; 24(1): 268, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012744

RESUMO

BACKGROUND: Enhancer dysregulation is one of the important features for cancer cells. Enhancers enriched with H3K4me3 have been implicated to play important roles in cancer. However, their detailed features and regulatory mechanisms have not been well characterized. RESULTS: Here, we profile the landscape of H3K4me3-enriched enhancers (m3Es) in 43 pairs of colorectal cancer (CRC) samples. M3Es are widely distributed in CRC and averagely possess around 10% of total active enhancers. We identify 1322 gain variant m3Es and 367 lost variant m3Es in CRC. The target genes of the gain m3Es are enriched in immune response pathways. We experimentally prove that repression of CBX8 and RPS6KA5 m3Es inhibits target gene expression in CRC. Furthermore, we find histone methyltransferase MLL1 is responsible for depositing H3K4me3 on the identified Vm3Es. We demonstrate that the transcription factor AP1/JUN interacts with MLL1 and regulates m3E activity. Application of a small chemical inhibitor for MLL1 activity, OICR-9429, represses target gene expression of the identified Vm3Es, enhances anti-tumor immunity and inhibits CRC growth in an animal model. CONCLUSIONS: Taken together, our study illustrates the genome-wide landscape and the regulatory mechanisms of m3Es in CRC, and reveals potential novel strategies for cancer treatment.


Assuntos
Neoplasias Colorretais , Histonas , Proteína de Leucina Linfoide-Mieloide , Proteínas Proto-Oncogênicas c-jun , Animais , Neoplasias Colorretais/genética , Elementos Facilitadores Genéticos , Histonas/metabolismo , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Fator de Transcrição AP-1/metabolismo , Humanos , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo
7.
Life Sci Alliance ; 6(11)2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37604584

RESUMO

Loss of c-JUN leads to early mouse embryonic death, possibly because of a failure to develop a normal cardiac system. How c-JUN regulates human cardiomyocyte cell fate remains unknown. Here, we used the in vitro differentiation of human pluripotent stem cells into cardiomyocytes to study the role of c-JUN. Surprisingly, the knockout of c-JUN improved cardiomyocyte generation, as determined by the number of TNNT2+ cells. ATAC-seq data showed that the c-JUN defect led to increased chromatin accessibility on critical regulatory elements related to cardiomyocyte development. ChIP-seq data showed that the knockout c-JUN increased RBBP5 and SETD1B expression, leading to improved H3K4me3 deposition on key genes that regulate cardiogenesis. The c-JUN KO phenotype could be copied using the histone demethylase inhibitor CPI-455, which also up-regulated H3K4me3 levels and increased cardiomyocyte generation. Single-cell RNA-seq data defined three cell branches, and knockout c-JUN activated more regulons that are related to cardiogenesis. In summary, our data demonstrated that c-JUN could regulate cardiomyocyte cell fate by modulating H3K4me3 modification and chromatin accessibility and shed light on how c-JUN regulates heart development in humans.


Assuntos
Células-Tronco Embrionárias Humanas , Proteínas Proto-Oncogênicas c-jun , Animais , Humanos , Camundongos , Diferenciação Celular , Cromatina/genética , Genes jun , Miócitos Cardíacos , Proteínas Proto-Oncogênicas c-jun/metabolismo
8.
Front Immunol ; 14: 1224892, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37483616

RESUMO

Activator protein-1 (AP-1) is a transcription factor that consists of a diverse group of members including Jun, Fos, Maf, and ATF. AP-1 involves a number of processes such as proliferation, migration, and invasion in cells. Dysfunctional AP-1 activity is associated with cancer initiation, development, invasion, migration and drug resistance. Therefore, AP-1 is a potential target for cancer targeted therapy. Currently, some small molecule inhibitors targeting AP-1 have been developed and tested, showing some anticancer effects. However, AP-1 is complex and diverse in its structure and function, and different dimers may play different roles in different type of cancers. Therefore, more research is needed to reveal the specific mechanisms of AP-1 in cancer, and how to select appropriate inhibitors and treatment strategies. Ultimately, this review summarizes the potential of combination therapy for cancer.


Assuntos
Neoplasias , Fator de Transcrição AP-1 , Humanos , Fator de Transcrição AP-1/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Regulação da Expressão Gênica
9.
Mol Cancer Res ; 21(9): 908-921, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37310848

RESUMO

Luminal breast cancer has the highest bone metastasis frequency among all breast cancer subtypes; however, its metastatic mechanism has not been elucidated because of a lack of appropriate models. We have previously developed useful bone metastatic cell lines of luminal breast cancer using MCF7 cells. In this study, we characterized bone metastatic MCF7-BM cell lines and identified c-Jun as a novel bone metastasis marker of luminal breast cancer. The protein level of c-Jun was upregulated in MCF7-BM cells compared with that in parental cells, and its deficiency resulted in the suppression of tumor cell migration, transformation, and reduced osteolytic ability. In vivo, dominant-negative c-Jun exhibited smaller bone metastatic lesions and a lower metastatic frequency. Histologic analysis revealed that c-Jun expression was heterogeneous in bone metastatic lesions, whereas c-Jun overexpression mediated a vicious cycle between MCF7-BM cells and osteoclasts by enhancing calcium-induced migration and releasing the osteoclast activator BMP5. Pharmacological inhibition of c-Jun by the Jun amino-terminal kinase (JNK) inhibitor JNK-IN-8 effectively suppressed tumorigenesis and bone metastasis in MCF7-BM cells. Furthermore, c-Jun downstream signals were specifically correlated with the clinical prognosis of patients with the luminal subtype of breast cancer. Our results illustrate the potential benefits of a therapy that targets c-Jun to prevent bone metastasis in luminal breast cancer. IMPLICATIONS: c-Jun expression mediates bone metastasis in luminal breast cancer by forming a vicious cycle in the bone microenvironment, which reveals potential strategies for subtype-specific bone metastasis therapy.


Assuntos
Neoplasias Ósseas , Neoplasias da Mama , Feminino , Humanos , Neoplasias Ósseas/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Células MCF-7 , Osteoclastos/metabolismo , Microambiente Tumoral , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo
10.
PLoS Genet ; 19(3): e1010684, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36972315

RESUMO

The function of the stem cell system is supported by a stereotypical shape of the niche structure. In Drosophila ovarian germarium, somatic cap cells form a dish-like niche structure that allows only two or three germ-line stem cells (GSCs) reside in the niche. Despite extensive studies on the mechanism of stem cell maintenance, the mechanisms of how the dish-like niche structure is shaped and how this structure contributes to the stem cell system have been elusive. Here, we show that a transmembrane protein Stranded at second (Sas) and its receptor Protein tyrosine phosphatase 10D (Ptp10D), effectors of axon guidance and cell competition via epidermal growth factor receptor (Egfr) inhibition, shape the dish-like niche structure by facilitating c-Jun N-terminal kinase (JNK)-mediated apoptosis. Loss of Sas or Ptp10D in gonadal apical cells, but not in GSCs or cap cells, during the pre-pupal stage results in abnormal shaping of the niche structure in the adult, which allows excessive, four to six GSCs reside in the niche. Mechanistically, loss of Sas-Ptp10D elevates Egfr signaling in the gonadal apical cells, thereby suppressing their naturally-occurring JNK-mediated apoptosis that is essential for the shaping of the dish-like niche structure by neighboring cap cells. Notably, the abnormal niche shape and resulting excessive GSCs lead to diminished egg production. Our data propose a concept that the stereotypical shaping of the niche structure optimizes the stem cell system, thereby maximizing the reproductive capacity.


Assuntos
Proteínas de Drosophila , Animais , Apoptose/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Células Germinativas/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Nicho de Células-Tronco/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo
11.
Nat Commun ; 14(1): 1330, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36899005

RESUMO

Microenvironmental bystander cells are essential for the progression of chronic lymphocytic leukemia (CLL). We have discovered previously that LYN kinase promotes the formation of a microenvironmental niche for CLL. Here we provide mechanistic evidence that LYN regulates the polarization of stromal fibroblasts to support leukemic progression. LYN is overexpressed in fibroblasts of lymph nodes of CLL patients. LYN-deficient stromal cells reduce CLL growth in vivo. LYN-deficient fibroblasts show markedly reduced leukemia feeding capacity in vitro. Multi-omics profiling reveals that LYN regulates the polarization of fibroblasts towards an inflammatory cancer-associated phenotype through modulation of cytokine secretion and extracellular matrix composition. Mechanistically, LYN deletion reduces inflammatory signaling including reduction of c-JUN expression, which in turn augments the expression of Thrombospondin-1, which binds to CD47 thereby impairing CLL viability. Together, our findings suggest that LYN is essential for rewiring fibroblasts towards a leukemia-supportive phenotype.


Assuntos
Leucemia Linfocítica Crônica de Células B , Proteínas Proto-Oncogênicas c-jun , Trombospondinas , Quinases da Família src , Humanos , Fibroblastos/metabolismo , Regulação Leucêmica da Expressão Gênica , Leucemia/genética , Leucemia Linfocítica Crônica de Células B/genética , Transdução de Sinais , Quinases da Família src/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Trombospondinas/metabolismo
12.
Clin Epigenetics ; 15(1): 29, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36850002

RESUMO

BACKGROUND: Glioblastoma (GBM, WHO grade IV) is an aggressive, primary brain tumor. Despite extensive tumor resection followed by radio- and chemotherapy, life expectancy of GBM patients did not improve over decades. Several studies reported transcription deregulation in GBMs, but regulatory mechanisms driving overexpression of GBM-specific genes remain largely unknown. Transcription in open chromatin regions is directed by transcription factors (TFs) that bind to specific motifs, recruit co-activators/repressors and the transcriptional machinery. Identification of GBM-related TFs-gene regulatory networks may reveal new and targetable mechanisms of gliomagenesis. RESULTS: We predicted TFs-regulated networks in GBMs in silico and intersected them with putative TF binding sites identified in the accessible chromatin in human glioma cells and GBM patient samples. The Cancer Genome Atlas and Glioma Atlas datasets (DNA methylation, H3K27 acetylation, transcriptomic profiles) were explored to elucidate TFs-gene regulatory networks and effects of the epigenetic background. In contrast to the majority of tumors, c-Jun expression was higher in GBMs than in normal brain and c-Jun binding sites were found in multiple genes overexpressed in GBMs, including VIM, FOSL2 or UPP1. Binding of c-Jun to the VIM gene promoter was stronger in GBM-derived cells than in cells derived from benign glioma as evidenced by gel shift and supershift assays. Regulatory regions of the majority of c-Jun targets have distinct DNA methylation patterns in GBMs as compared to benign gliomas, suggesting the contribution of DNA methylation to the c-Jun-dependent gene expression. CONCLUSIONS: GBM-specific TFs-gene networks identified in GBMs differ from regulatory pathways attributed to benign brain tumors and imply a decisive role of c-Jun in controlling genes that drive glioma growth and invasion as well as a modulatory role of DNA methylation.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Neoplasias Encefálicas/genética , Cromatina/genética , Metilação de DNA , Epigênese Genética , Glioblastoma/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo
13.
Aging Cell ; 22(4): e13792, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36840360

RESUMO

Diverse mouse strains have different health and life spans, mimicking the diversity among humans. To capture conserved aging signatures, we studied long-lived C57BL/6J and short-lived NZO/HILtJ mouse strains by profiling transcriptomes and epigenomes of immune cells from peripheral blood and the spleen from young and old mice. Transcriptional activation of the AP-1 transcription factor complex, particularly Fos, Junb, and Jun genes, was the most significant and conserved aging signature across tissues and strains. ATAC-seq data analyses showed that the chromatin around these genes was more accessible with age and there were significantly more binding sites for these TFs with age across all studied tissues, targeting pro-inflammatory molecules including Il6. Age-related increases in binding sites of JUN and FOS factors were also conserved in human peripheral blood ATAC-seq data. Single-cell RNA-seq data from the mouse aging cell atlas Tabula Muris Senis showed that the expression of these genes increased with age in B, T, NK cells, and macrophages, with macrophages from old mice expressing these molecules more abundantly than other cells. Functional data showed that upon myeloid cell activation via poly(I:C), the levels of JUN protein and its binding activity increased more significantly in spleen cells from old compared to young mice. In addition, upon activation, old cells produced more IL6 compared to young cells. In sum, we showed that the aging-related transcriptional activation of Jun and Fos family members in AP-1 complex is conserved across immune tissues and long- and short-living mouse strains, possibly contributing to increased inflammation with age.


Assuntos
Proteínas Proto-Oncogênicas c-fos , Fator de Transcrição AP-1 , Animais , Humanos , Camundongos , Envelhecimento/genética , Interleucina-6/metabolismo , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo , Ativação Transcricional
14.
Tissue Cell ; 81: 102010, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36608637

RESUMO

OBJECTIVE: Esophageal squamous cell carcinoma (ESCC) is a globally aggressive malignant tumor. This study aimed to investigate the mechanism of JUND in ESCC development via MAPRE2. METHODS: ESCC cells (KYSE-450 and ECA109) were transfected with small interfering RNA (si)-JUND, si-MAPRE2, si-JUND, or pcDNA3.1-MAPRE2. JUND and MAPRE2 expression in ESCC cells was detected with quantitative real-time polymerase chain reaction and western blot. Cell counting kit-8 and 5-ethynyl-2'-deoxyuridine assays were used to determine ESCC cell proliferation. Dual-luciferase reporter gene and chromatin immunoprecipitation assays were performed to assess binding between JUND and MAPRE2. Human umbilical vein endothelial cells (HUVECs) were co-cultured with ESCC cell supernatants. Angiogenesis was assessed with an in vitro angiogenesis assay. Western blot was conducted to evaluate the expression of angiogenic proteins [vascular endothelial growth factor A (VEGFA), matrix metallopeptidase 9 (MMP-9), and angiopoietin-2 (ang2)]. RESULTS: The levels of expression of JUND and MAPRE2 were high in ESCC cells. Mechanistically, JUND bound to MAPRE2 promoter and increased MAPRE2 transcription. Downregulation of JUND or MAPRE2 inhibited KYSE-450 and ECA109 cell proliferation and reduced the levels of expression of VEGFA, MMP-9, and ang2 and tube formation in HUVECs co-cultured with ESCC cell supernatants. MAPRE2 upregulation counteracted the inhibitory effects of JUND silencing on cell proliferative and angiogenic capabilities in ESCC. CONCLUSIONS: JUND promoted MAPRE2 transcription, thereby facilitating cell proliferative and angiogenic abilities in ESCC.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , MicroRNAs , Proteínas Associadas aos Microtúbulos , Proteínas Proto-Oncogênicas c-jun , Humanos , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/genética , Células Endoteliais/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Regulação Neoplásica da Expressão Gênica , Metaloproteinase 9 da Matriz/genética , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , RNA Interferente Pequeno , Regulação para Cima/genética , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo
15.
Mol Cell Biochem ; 478(4): 767-780, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36083512

RESUMO

Hepatocellular carcinoma, as a common liver cirrhosis complication, has become the sixth most common cancer worldwide, and its increasing incidence has resulted in considerable medical and economic burdens. As a natural polyphenolic compound, kaempferol has exhibits a wide range of antitumor activities against multiple cancer targets. In this study, the Autodock software was used for molecular docking to simulate the interaction process between kaempferol and HCC targets and the PyMOL software was used for visualization. Proliferation of kaempferol HepG2 cells under the effect of kaempferol was detected using Cell Counting Kit-8 (CCK-8) assay, and the apoptosis rate of HepG2 cells was detected using flow cytometry. The expressions of proteins BAX, CDK1, and JUN protein expressions were detected by Western blot. Molecular docking found that the kaempferol ligand has 3 rotatable bonds, 6 nonpolar hydrogen atoms, and 12 aromatic carbon atoms, and can form complexes with the kaempferol targets P53, BAX, AR, CDK1, and JUN through electrostatic energy. GO (Gene Ontology) enrichment analysis suggests that kaempferol regulates the biological function of hepatocellular carcinoma cells and is related to apoptosis. Cell Counting Kit-8 assay suggested that Kaempferol can significantly inhibited HepG2 cell proliferation, and the inhibition rate increased with the increase in drug concentration and incubation time. Moreover, kaempferol can promoted HepG2 cell apoptosis in a dose-dependent manner. This compound upregulated BAX and JUN expression and downregulated CDK1 expression. Thus, Kaempferol can promote HepG2 cell apoptosis, and the regulatory mechanism may be related to the regulation of the expression levels of the apoptosis-related proteins BAX, CDK1, and JUN.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Proteína X Associada a bcl-2 , Carcinoma Hepatocelular/patologia , Proteína Quinase CDC2/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Células Hep G2 , Quempferóis/farmacologia , Neoplasias Hepáticas/patologia , Simulação de Acoplamento Molecular , Proteínas Proto-Oncogênicas c-jun/metabolismo
16.
Rheumatology (Oxford) ; 62(5): 1955-1963, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36165706

RESUMO

OBJECTIVES: Long non-coding RNAs (lncRNAs) play important roles in RA pathogenesis. However, specific lncRNAs that regulate gene expression in RA pathogenesis are poorly known. This study was undertaken to characterize a novel lncRNA (lnc-RNU12) that has a lower-than-normal expression level in RA patients. METHODS: We performed initial genome-wide lncRNA microarray screening in peripheral blood mononuclear cells from 28 RA cases and 18 controls. Multiple methods were used to validate the detected associations between lncRNAs and RA. Furthermore, we identified the source and characteristics of the highlighted lncRNAs, detected the target genes, and determined the functional effect on immune cells through lncRNA knock-down in Jurkat T cell lines. RESULTS: lnc-RNU12 was downregulated in peripheral blood mononuclear cells and T cell subtypes of RA patients and was genetically associated with RA risk. lnc-RNU12 mediates the effect of microbiome alterations on RA risk. Activation of T cells caused low expression of lnc-RNU12. Knock-down of lnc-RNU12 in Jurkat T cells caused cell cycle S-phase arrest and altered the expression of protein-coding genes related to the cell cycle and apoptosis (e.g. c-JUN, CCNL2, CDK6, MYC, RNF40, PKM, VPS35, DNAJB6 and FLCN). Finally, c-JUN and CCNL2 were identified as target genes of lnc-RNU12 at the mRNA and protein expression levels. RNA-binding protein immunoprecipitation assays verified the interaction between lnc-RNU12 and the two proteins (c-Jun and cyclin L2) in Jurkat cells. CONCLUSIONS: Our study suggested that lnc-RNU12 was involved in the pathogenesis of RA by influencing the T cell cycle by targeting c-JUN and CCNL2.


Assuntos
Artrite Reumatoide , RNA Longo não Codificante , Humanos , Ciclo Celular , Ciclinas , Proteínas de Choque Térmico HSP40 , Leucócitos Mononucleares/metabolismo , Chaperonas Moleculares , Proteínas do Tecido Nervoso , RNA Longo não Codificante/genética , Linfócitos T/metabolismo , Fatores de Transcrição , Proteínas Proto-Oncogênicas c-jun/metabolismo
17.
Biochim Biophys Acta Mol Cell Res ; 1870(3): 119418, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36581088

RESUMO

Hedgehog (Hh) signaling pathway includes canonical and non-canonical activation manners. In colorectal cancer, we have previously shown that PGE2-JNK could initiate non-canonical activation of the Hh signaling pathway. In this study, we showed that c-Jun, a classic substrate of JNK, increased Gli2 protein stability after phosphorylated by PGE2. Suppressing the function of c-Jun or JNK indicated that c-Jun prevents Gli2 from protease degradation caused by PGE2-JNK. Moreoer, we revealed that less ubiquitination of Gli2 was detected in colorectal cancer cells treated with PGE2 while suppression of c-Jun restored the ubiquitination of Gli2. In addition, we observed that suppression of c-Jun significantly decreased Gli2 expression no matter when Gli2 remained in phosphorylation or non-phosphorylation state. These phenomena were recapitulated, when the endpoint of Gli2 expression was replaced by Gli2 ubiquitination. Furthermore, we demonstrated that restricting c-Jun function ablated the PGE2-provoked Hh activity and proliferation of colorectal cancer cells. These results elucidated that the evasion of Gli2 with phosphorylation from proteasomal-ubiquitin degradation needed the cooperation of phosphorylated c-Jun by kinase JNK, which contributed to promoting Hh activation and the proliferation of colorectal cancer cells. This study provides a theoretical foundation to target PGE2 downstream for the prevention and treatment of colorectal cancer.


Assuntos
Neoplasias Colorretais , Proteínas Quinases JNK Ativadas por Mitógeno , Proteínas Proto-Oncogênicas c-jun , Proteína Gli2 com Dedos de Zinco , Humanos , Dinoprostona , Proteínas Hedgehog/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Proteínas Nucleares , Ubiquitina/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo
18.
Cell Death Dis ; 13(11): 967, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36400758

RESUMO

Long noncoding RNAs (lncRNAs) are a novel class of noncoding RNAs that have emerged as critical regulators and biomarkers in various cancers. Nevertheless, the expression profile and mechanistic function of lncRNAs in cholangiocarcinoma (CCA) remain unclear. Herein, we examined the expression levels of linc00976 in clinical specimens and cell lines using reverse transcription-quantitative PCR. In total, 50 patients with CCA were enrolled to analyze the correlation between linc00976 expression and clinical characteristics of CCA. Loss- and gain-of-function experiments were performed to investigate the biological effects of linc00976 on proliferation, ferroptosis, migration, and invasion of CCA cells in vitro and in vivo. In situ hybridization, RNA immunoprecipitation, bioinformatic databases, RNA pull-down assay, a dual-luciferase reporter assay, mRNA sequencing, chromatin immunoprecipitation-PCR, and rescue experiments were performed to elucidate the underlying mechanisms of linc00976-induced competitive endogenous RNA regulatory networks. We characterized a novel and abundant lncRNA, linc00976, that functions as a pro-oncogenic regulator of CCA progression. Compared with normal controls, linc00976 was dramatically upregulated in CCA tissue samples and cell lines. Patients with CCA exhibiting high linc00976 expression had a highly advanced clinical stage, substantial lymph node metastasis, and poor overall survival. Knockdown of linc00976 significantly repressed proliferation and metastasis and promoted ferroptosis of CCA cells both in vitro and in vivo, whereas linc00976 overexpression exerted the opposite effect. Mechanistically, linc00976 competitively interacted with miR-3202 to upregulate GPX4 expression, thus contributing to the malignant biological behavior of CCA cells. Moreover, we demonstrated that JUND specifically interacts with the linc00976 promoter and activates linc00976 transcription. Accordingly, JUND promotes linc00976 transcription, and linc00976 plays a crucial role in accelerating CCA tumorigenesis and metastasis and inhibiting ferroptosis by modulating the miR-3202/GPX4 axis. These findings suggest that targeting linc00976 may afford a promising therapeutic strategy for patients with CCA.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Ferroptose , MicroRNAs , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Ferroptose/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Proliferação de Células/genética , Linhagem Celular Tumoral , Colangiocarcinoma/patologia , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/patologia , Proteínas Proto-Oncogênicas c-jun/metabolismo
19.
Nat Commun ; 13(1): 6133, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36253406

RESUMO

Protein phosphorylation is a major regulatory mechanism of cellular signalling. The c-JUN proto-oncoprotein is phosphorylated at four residues within its transactivation domain (TAD) by the JNK family kinases, but the functional significance of c-JUN multisite phosphorylation has remained elusive. Here we show that c-JUN phosphorylation by JNK exhibits defined temporal kinetics, with serine63 and serine73 being phosphorylated more rapidly than threonine91 and threonine93. We identify the positioning of the phosphorylation sites relative to the kinase docking motif, and their primary sequence, as the main factors controlling phosphorylation kinetics. Functional analysis reveals three c-JUN phosphorylation states: unphosphorylated c-JUN recruits the MBD3 repressor, serine63/73 doubly-phosphorylated c-JUN binds to the TCF4 co-activator, whereas the fully phosphorylated form disfavours TCF4 binding attenuating JNK signalling. Thus, c-JUN phosphorylation encodes multiple functional states that drive a complex signalling response from a single JNK input.


Assuntos
Proteínas Quinases JNK Ativadas por Mitógeno , Proteínas Proto-Oncogênicas c-jun , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , MAP Quinase Quinase 4/metabolismo , Sistema de Sinalização das MAP Quinases , Fosforilação , Proteínas Proto-Oncogênicas c-jun/metabolismo , Transdução de Sinais
20.
Mol Med ; 28(1): 123, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36224531

RESUMO

BACKGROUND: Our previous data demonstrated that miR-19b expression was increased in human lung microvascular endothelial cells in-vitro-, in-vivo and in patients with hemorrhagic shock, leading to a decrease in syndecan-1 mRNA and protein and resulting in loss of endothelial barrier function. However, the mechanism underlying increased miR-19b expression remains unclear. The objective of the current study was to determine if c-Jun mediates the early responsive microRNA, miR-19b, to cause endothelial barrier dysfunction. METHOD: Human lung microvascular endothelial cells (HLMEC) or HEK293T cells were transfected with c-Jun overexpressing vector, c-Jun siRNA, miR-19b promoter vector, miR-19b mutated promoter vector, miR-19b oligo inhibitor, then subjected to hypoxia/reoxygenation as in-vitro model of hemorrhagic shock. Levels of protein, miRNA, and luciferase activity were measured. Transwell permeability of endothelial monolayers were also determined. Plasma levels of c-Jun were measured in injured patients with hemorrhagic shock. RESULT: Hypoxia/reoxygenation induced primary (pri-)miR-19b, mature miR-19b, and c-Jun expression over time in a comparable timeframe. c-Jun silencing by transfection with its specific siRNA reduced both pri-miR-19b and mature miR-19b levels. Conversely, c-Jun overexpression enhanced H/R-induced pri-miR-19b. Studies using a luciferase reporter assay revealed that in cells transfected with vectors containing the wild-type miR-19b promoter and luciferase reporter, c-Jun overexpression or hypoxia/ reoxygenation significantly increased luciferase activity. c-Jun knockdown reduced the luciferase activity in these cells, suggesting that the miR-19b promoter is directly activated by c-Jun. Further, chromatin immunoprecipitation assay confirmed that c-Jun directly bound to the promoter DNA of miR-19b and hypoxia/reoxygenation significantly increased this interaction. Additionally, c-Jun silencing prevented cell surface syndecan-1 loss and endothelial barrier dysfunction in HLMECs after hypoxia/reoxygenation. Lastly, c-Jun was significantly elevated in patients with hemorrhagic shock compared to healthy controls. CONCLUSION: Transcription factor c-Jun is inducible by hypoxia/reoxygenation, binds to and activates the miR-19b promoter. Using an in-vitro model of hemorrhagic shock, our findings identified a novel cellular mechanism whereby hypoxia/ reoxygenation increases miR-19b transcription by inducing c-Jun and leads to syndecan-1 decrease and endothelial cell barrier dysfunction. This finding supports that miR-19b could be a potential therapeutic target for hemorrhage shock.


Assuntos
MicroRNAs , Proteínas Proto-Oncogênicas c-jun/metabolismo , Choque Hemorrágico , Células Endoteliais/metabolismo , Células HEK293 , Humanos , Hipóxia/metabolismo , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo , RNA Interferente Pequeno , Choque Hemorrágico/genética , Choque Hemorrágico/metabolismo , Sindecana-1/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...